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● Alzheimer’s disease (AD) is a neurodegenerative condition that progresses over
decades.

● Early detection of individuals at high risk of future progression toward AD is
likely to be of critical for successful clinical treatments.

● We present a large-scale study to characterize how predictable an individual
subjects' future AD trajectory is, several years in advance, based on rich multi-
modal data, and using modern deep learning methods.

● We quantify the contribution of different data types in prediction, which yields
novel insights into the utility of different biomarkers.
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RESULTS

CONCLUSION

● Based on this architecture, three separate models are built: Linear Single-year
Model (LSM), Nonlinear Single-year Model (NSM), and Nonlinear Multi-year
Model (NMM).

● LSM neither has nonlinear ReLU activation between layers and nor the
proposed time feature (Δt) neuron in input layer.

● NSM has ReLU activation between layers but does not have the Δt neuron in
input layer.

● NMM has ReLU activation between layers and has the Δt neuron in input
layer.

● A custom sample weighting scheme is used during training to overcome the
imbalance in data.

DATASET AND PREPROCESSING

IMPACT OF MULTI-YEAR TRAINING

CN baseline (n = 615) MCI baseline (n = 789)

Female/Male 335 / 280 324 / 465

Age (yr) 73.19 ± 6.18 73.46 ± 7.39

Education (yr) 16.51 ± 2.57 15.93 ± 2.81

APOE4 (0/1/2) 430 / 169 / 14 371 / 313 / 98

Clinical Dementia Rating 0.04 ± 0.13 1.55 ± 0.89

Mini Mental State Examination 29.11 ± 1.11 27.52 ± 1.82

Table 1. Summary statistics of the participants at baseline in ADNI[1] database.

Time horizon (yr)
CN baseline MCI baseline

CN MCI MCI AD

1 427 14 674 110

2 527 32 431 218

3 181 41 317 261

4 230 49 202 286

5 123 54 127 292

Table 2. The number of available subjects in each diagnostic group for annual 
follow-up visits.

CONTRIBUTION OF DIFFERENT BIOMARKERSPROPOSED MODEL

Feed-forward, fully-connected neural network architecture.

Prediction performance of different models. Average ROC AUC values and
corresponding standard error bars.

ROC curves of NMM for each follow-up year. Average ROC curves obtained over
200 random initializations are displayed.

∆ ROC AUC values obtained with various biomarker combinations versus follow-
up years. CD: Clinical Data; FDG: Fluorine-18-Fluorodeoxyglucose PET. ICV:
Intracranial Volume.

● Our proposed model (NMM) performs better for both CN and MCI individuals
than the single-year models.

● Molecular biomarkers are only helpful in MCI, but not in CN.
● Structural magnetic resonance imaging (MRI) biomarkers (hippocampus

volume, specifically) offer a significant performance boost for CN-to-MCI
conversion but not MCI-to-AD conversion.

● In a future study, we will extend NMM to exploit structural data, such as whole-
brain images, and longitudinal input features.


