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Abstract—We seek to analyze brain networks derived from
MRI measurements and quantify the discriminative power of
centrality measures of these networks for the task of classifying
between structural (sMRI) and functional MRI (fMRI). We pass
a graph with node features derived from various centrality
measures as input into a deep graph neural network, which is
trained to classify networks as being derived from sMRI or fMRI
measurements. These graphs are extracted from a brain network,
where each node represents a region of the brain and each edge
weight is proportional to the correlation of brain activity between
two regions. We use a real-world dataset consisting of pairs of
sMRI and fMRI signals from a set of subjects.

I. INTRODUCTION

The phenomenon of nuclear magnetic resonance imaging
(NMRI) was first observed in 1945 [1], [2]. It was the injection
of radiofrequency engineering expertise and the availability of
stable new frequency sources, both byproducts of the wartime
development of radar, which probably made the demonstration
of NMRI possible. NMRI imaging was first reported in 1973
[3], [4] and the first human in vivo MRI images were produced
by the end of that decade. Compared with images from
other modalities, MRI images of the head provided excellent
anatomical detail and strong grey/white matter contrast. To-
day, coronal T1-weighted, three-dimensional, high-resolution
images are used to measure the volume of the hippocampus,
usually by means of manually tracing its outline. They are
also the basis for many cross-sectional and longitudinal studies
determining the volume of, and assessing changes in, the hip-
pocampus over time in hippocampal sclerosis and Alzheimer’s
disease.

The division between structural and functional imaging is
difficult to make because structure and function are often
inextricably intertwined in the brain. Definitions of functional
imaging are varied and often broad and will always be arbitrary
to a certain extent. On the basis of biological considerations,
functional imaging can be regarded as the method provid-
ing dynamic physiological information, whereas structural
imaging provides static anatomical information. Functional
magnetic resonance imaging (fMRI) [5], [6] measures brain
activity by detecting changes related to blood flow. This
technique is based on the fact that cerebral blood flow and
neuronal activation are combined. When an area of the brain

is used, blood flow to that area also increases [7]. The
primary form of fMRI using blood oxygen-dependent contrast
(BOLD), was discovered in 1990 by Seiji Ogawa. This is a
type of specialized brain and body scan used to map neural
activity in the brain or spinal cord of humans or other animals
by imaging the change in blood flow (hemodynamic response)
related to energy use by brain cells. Since the early 1990s,
fMRI has dominated brain mapping research because it does
not involve the use of injections, surgery, oral substances, or
exposure to ionizing radiation. This measurement is frequently
subject to interference from various sources; therefore, sta-
tistical procedures are used to extract the underlying signal.
Brain activation results can be graphically represented by color
coding the intensity of activation on the specific brain or
region being studied. This technique can locate the operation
within millimeters, but when using standard techniques, no
better within a few seconds window. Other methods to obtain
contrast are arterial labeling [8] and MRI diffusion. Diffusion
MRI is similar to BOLD fMRI but provides contrast based
on how diffusely water molecules are present in the brain.
Task-based fMRI (T-fMRI) measures BOLD signal changes
between task-stimulated states and control states.

In addition to detecting BOLD responses from task or
stimulus-induced activity, fMRI can measure either resting or
negative task states, showing the subject’s baseline variance
BOLD. Resting-state FMRI (R-fMRI) [9] is a functional
magnetic resonance imaging (fMRI) method used in brain
mapping to evaluate regional interactions that occur during
resting or an inactive task [10], [11]. Several resting brain
networks have been identified, one of which is the default
mode network. These brain networks are observed through
changes in blood flow in the brain, producing a signal known
as a blood oxygen level-dependent (BOLD) signal that can be
measured by fMRI. Since brain activity is intrinsic, present
even in the absence of an externally requested task, any
region of the brain will experience spontaneous fluctuations
in the BOLD signal. The resting-state approach is useful
for exploring the functional organization of the brain and
examining whether it is altered in neurological or psychiatric
disorders. Due to the resting-state aspect of this imaging, data
can be collected from a variety of patient groups, including



those with intellectual disabilities, groups of children, and even
unconscious individuals [12], [13]. Resting-state functional
connectivity research has revealed a number of networks that
are consistently found in healthy subjects, at different stages
of consciousness, and across species, and represent specific
patterns of synchronous activity.

II. BRIEF EXPLANATION OF THE PROBLEM

In this project, we seek to classify between structural
connectivity (SC) and functional connectivity (FC) signals in
MRI. Our networks in this work are connectivity matrices,
where each node represents a region of the brain and the
edge weights are proportional to the correlation of brain
activity between two regions. For node features, we experiment
with several different centrality measures, including degree,
eigenvector, closeness, and information. We build a graph
convolutional network (GCN) that takes these connectivity
matrices as input and outputs the prediction of whether the
matrix is derived from a structural or functional connectivity
matrix. We use classification accuracy and the area under the
receiver operating characteristics curve (AUC) to compare the
predictive performance of these classifiers.

The centrality measures we choose can be categorized by
whether or not they leverage the edge weight information.
Degree, closeness, and unweighted eigenvector centrality mea-
sures do not use edge weight information (i.e. they treat the
edges as binary), while weighted eigenvector and informa-
tion centrality measures do. We refer to the first group as
nonweighted centrality measures and the second group as
weighted centrality measures. We hypothesize that weighted
centrality measures should be more useful as node features
for this task. This is because much of the variability between
structural and functional MRI signals is in the differences in
relative brain function between different regions of the brain.
Thus, features that leverage this difference (which is encoded
in the edge weights) should be more discriminate than features
that do not.

III. PROPOSED METHOD

A. Node Embeddings

We consider the following node embeddings ϕ for node v:
1) Degree Centrality: The embedding of the node is equiv-

alent to its degree:

ϕ(v) = deg(v). (1)

2) Unweighted Eigenvector Centrality: Eigenvector cen-
trality computes the centrality of a node based on the centrality
of its neighbors. The eigenvector centrality for node i is the
i-th element of the vector x defined by the equation

Ax = λx, (2)

where A is the adjacency matrix of the graph with eigenvalue
λ.

In the unweighted variant, we treat A as a (symmetric)
binary matrix with entries in {0, 1}. In the weighted variant, A
is a (symmetric) matrix with entries equal to the edge weights.

3) Closeness Centrality: The embedding is the (normal-
ized) inverse distance to all other nodes in the graph:

ϕ(v) =
N − 1∑
u d(u, v)

, (3)

where d(u, v) is the distance between vertices u and v.
4) Information Centrality: Also known as current-flow

closeness centrality, information centrality is a variant of
closeness centrality based on effective resistance between
nodes in a network [14]:

ϕ(v) = (NCvv ++trace(C)− 2/N)−1, (4)

where C = (L+ J)−1, L is the Laplacian, and J = 11T .

B. Model

We wish to design a model that maps a given graph G to
a scalar in [0, 1]. We use a graph convolutional network with
ℓ graph convolution layer, a readout layer, and a final dense
classifier with sigmoid activation.

The graph convolution layer we use is first presented in
[15]. It performs the operation

Hℓ+1 = σ(D̃−1/2ÃD̃−1/2HℓW ℓ), (5)

where Ã = A+ IN is the adjacency matrix of the undirected
graph with added self-connections, IN is the identity matrix,
D̃ii =

∑
j Ãij , X is the node embeddings, and W ℓ is

the layer-specific trainable weight matrix. σ is a nonlinear
activation function, which we choose as the ReLU function:
ReLU(x) = max(0, x). This operation can be viewed as a
propagation rule for the localized first-order approximation of
a spectral graph convolution. Effectively, these layers embed
each node by performing multiple rounds of message passing.

The readout layer aggregates node embeddings into a uni-
fied graph embedding. We choose a simple average of node
embeddings as the readout layer:

eG =
1

|V|
∑
v∈V

ev, (6)

where ev is the learned embedding for each node.
Finally, a dense layer maps the aggregated embedding to a

scalar with an additional bias, which is followed by a sigmoid
activation:

p = sigmoid(wT eG + b). (7)

In this case, w is a column vector of trainable weights and b
is a trainable bias scalar.

C. Loss

We train the model by minimizing the binary cross-entropy
loss:

L = −
N∑
i=1

[yi log(pi) + (1− yi) log(1− pi)] , (8)

where y is the label of the input graph and i indexes over a
dataset of N graph-label pairs.



IV. EXPERIMENTS

A. Dataset

The data for this project comes from the publicly avail-
able HCP database containing high-resolution, preprocessed
anatomical, diffusion, and resting-state functional MRI data.
Specifically, we use WU-Minn HCP minimally processed
S1200 release which includes high-resolution 3T MR scans,
demographics, and behavioral and cognitive scores for a
population of 1113 young healthy adults (age 22 to 37 years).

1) Construction of the Structural Connectomes: HCP sub-
jects were scanned on a customized Siemens 3T ”Connec-
tome Skyra” housed at Washington University in St. Louis.
The HCP diffusion data (1.25mm isotropic voxels, TR/TE =
5520/89.5ms, 3x multiband acceleration, b=1000,2000,3000,
90 directions/shell, collected with both left-right and right-
left phase encoding) were first minimally preprocessed by the
HCP consortium to correct for motion, EPI and eddy-current
distortion, and registered to each subject’s T1 anatomical
scan [16]. We used a probabilistic (iFOD2 [17]), anatomically
constrained (ACT [18]) tractography algorithm with dynamic
white-matter seeding to create individual, whole-brain trac-
tograms containing 5 million streamlines for each subject. The
SC between any two regions was the SIFT2-weighted sum of
streamlines connecting those regions divided by the sum of
the gray matter volume of those regions. The result was an
ROI-volume normalized pairwise SC matrix for each subject.

2) Construction of the Functional Connectomes: There
were four gradient-echo EPI resting-state fMRI runs (2.0mm
isotropic voxels, TR/TE = 720/33.1ms, 8x multiband accel-
eration, FoV = 208 × 180 mm2, FA = 52◦, 72 slices) of
approximately 15 minutes each, with two runs in one session
and two in a second session, where each session included
both right-left and left-right phase encoding. There were 1200
volumes for each run and a total of 4800 volumes (1200
volumes × 4 runs) for each subject. The data were minimally
preprocessed [16] and ICA+FIX [19], [20] denoised by the
HCP consortium [21]. FC matrices were calculated using the
Pearson correlation between each region-pair’s average time
series in the CC400 atlas [22], resulting in four FC matrices
for each subject.

B. Model and Training Details

For nonweighted centrality measures, we use one graph
convolution layer. For weighted centrality measures, we use
two graph convolution layers. The hidden channels of the
convolution layer are 64.

For training, we use the Adam optimizer with a learning
rate of 0.01, and a batch size of 4. We use a 50/50 train/test
split.

C. Metrics

We evaluate our model using two metrics: accuracy (Acc)
and the area under the receiver operating characteristics curve
(AUC).

TABLE I
SUMMARY OF RESULTS. ACCURACY AND AUC FOR ALL NODE

CENTRALITY EMBEDDINGS.

Model Acc (%) AUC (%)

Degree 100.0 100.0
Eigenvector 100.0 100.0
Closeness 100.0 100.0

Weighted Eigenvector 100.0 100.0
Information 99.2 100.0

D. Results

Table I shows the main results. We find that all models
can achieve perfect accuracy and AUC on this task, except for
Information. We hypothesize that this is due to the information
centrality measure being sensitive to noise, or a lack of model
capacity due to the increased information represented in the
node features.

Figures 1, 2, 3, 4, and 5 show loss, accuracy, and AUC
curves across training. We generally observe the convergence
of the network within 20-30 epochs for the nonweighted
centrality measures, and the jump to zero loss occurs quite
suddenly. On the other hand, weighted eigenvector and in-
formation centrality measures take longer to converge. The
weighted eigenvector has a smoother loss curve, while the
loss of the information centrality is jumpy, perhaps indicating
the presence of noise in the inputs that the centrality measure
emphasizes.

V. DISCUSSION AND CONCLUSION

We train a GCN model to classify structural and functional
fMRI brain signals, using various graph centrality measures as
node features. We find that nonweighted centrality measures
outperform weighted centrality measures in terms of end
classification performance, contrary to our initial hypothesis.
We attribute this to the fact that although the nonweighted
centrality measures do not leverage edge weight information,
this information is still propagated through the GCN model
via A in Eq. (5). In fact, the performance for weighted
centrality measures may suffer because the features may be
more sensitive to noise, or may cause the model to underfit due
to the increased complexity. Indeed, during our experiments,
we increased the number of graph convolution layers for
the weighted centrality measures in order to achieve (near)
equivalent results to the nonweighted measures. Nevertheless,
we conclude that simple, nonweighted centrality measures are
sufficient node features for this task.

We believe our method offers automated classification of
fMRI connectivity types and provides insights into the most
useful features for distinguishing structural and functional
brain signals, particularly through the use of simple centrality
measures and a robust graph neural network.



Fig. 1. Learning curves with degree centrality as node embeddings.

Fig. 2. Learning curves with unweighted eigenvector centrality as node embeddings.

Fig. 3. Learning curves with closeness centrality as node embeddings.



Fig. 4. Learning curves with weighted eigenvector centrality as node embeddings.

Fig. 5. Learning curves with information centrality as node embeddings.
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